491. 非递减子序列
题目描述
给你一个整数数组 nums ,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。
数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。
示例
输入:nums = [4,6,7,7]
输出:[[4,6],[4,6,7],[4,6,7,7],[4,7],[4,7,7],[6,7],[6,7,7],[7,7]]
解题思路
class Solution {
    List<List<Integer>> ans = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    public List<List<Integer>> findSubsequences(int[] nums) {
        traceBack(nums, 0);
        return ans;
    }
    public void traceBack(int[] nums, int startIndex) {
        if (path.size() >= 2) {
            ans.add(new ArrayList<>(path));
        }
        HashMap<Integer, Integer> map = new HashMap<>();
        for (int i = startIndex; i < nums.length; i++) {
            if (!path.isEmpty() && nums[i] < path.getLast()) {
                continue;
            }
            if (map.getOrDefault(nums[i], 0) >= 1) {
                continue;
            }
            map.put(nums[i], map.getOrDefault(nums[i], 0) + 1);
            path.add(nums[i]);
            traceBack(nums, i + 1);
            path.removeLast();
          
        }
    }
}
46. 全排列
题目描述
给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
示例
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
解题思路
class Solution {
    List<List<Integer>> ans = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    boolean[] used;
    public List<List<Integer>> permute(int[] nums) {
        used = new boolean[nums.length];
        traceBack(nums);
        return ans;
    }
    public void traceBack(int[] nums) {
        if (path.size() == nums.length) {
            ans.add(new ArrayList<>(path));
        }
        for (int i = 0; i < nums.length; i++) {
            if (used[i]) continue;
            path.add(nums[i]);
            used[i] = true;
            traceBack(nums);
            used[i] = false;
            path.removeLast();
        }
    }
}
47. 全排列 II
题目描述
给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
示例
输入:nums = [1,1,2]
输出:
[[1,1,2],
[1,2,1],
[2,1,1]]
解题思路
class Solution {
    List<List<Integer>> result = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    boolean[] used;
    public List<List<Integer>> permuteUnique(int[] nums) {
        Arrays.sort(nums);
        used = new boolean[nums.length];
        traceBack(nums);
        return result;
    }
    public void traceBack(int[] nums){
        if(path.size() == nums.length){
            result.add(new ArrayList(path));
            return;
        }
        for(int i = 0; i < nums.length; i++){
            if(used[i]){
                continue;
            }
            if(i > 0 && nums[i] == nums[i - 1] && !used[i - 1]){
                continue;
            }
            path.add(nums[i]);
            used[i] = true;
            traceBack(nums);
            path.removeLast();
            used[i] = false;
      
        }
    }
}
332. 重新安排行程
题目描述
给你一份航线列表 tickets ,其中 tickets[i] = [fromi, toi] 表示飞机出发和降落的机场地点。请你对该行程进行重新规划排序。
所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。如果存在多种有效的行程,请你按字典排序返回最小的行程组合。
- 例如,行程 
["JFK", "LGA"]与["JFK", "LGB"]相比就更小,排序更靠前。 
假定所有机票至少存在一种合理的行程。且所有的机票 必须都用一次 且 只能用一次。
示例

输入:tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
输出:["JFK","ATL","JFK","SFO","ATL","SFO"]
解释:另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"] ,但是它字典排序更大更靠后。
解题思路
class Solution {
    // 图:每个出发点对应一个按字典序排列的目的地最小堆
    Map<String, PriorityQueue<String>> graph = new HashMap<>();
    LinkedList<String> route = new LinkedList<>();
    public List<String> findItinerary(List<List<String>> tickets) {
        // 1. 建图
        for (List<String> t : tickets) {
            graph.computeIfAbsent(t.get(0), k -> new PriorityQueue<>()).offer(t.get(1));
        }
        // 2. 从 JFK 出发
        dfs("JFK");
        // 3. 因为是递归后序加入,所以要反转
        return route;
    }
    private void dfs(String from) {
        PriorityQueue<String> pq = graph.get(from);
        // 一直走最小字典序的出边
        while (pq != null && !pq.isEmpty()) {
            dfs(pq.poll());
        }
        // 当前节点入结果(后序位置)
        route.addFirst(from);
    }
}
51. N 皇后
题目描述
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。
示例

输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释:如上图所示,4 皇后问题存在两个不同的解法。
解题思路
37. 解数独
题目描述
编写一个程序,通过填充空格来解决数独问题。
数独的解法需 遵循如下规则:
- 数字 
1-9在每一行只能出现一次。 - 数字 
1-9在每一列只能出现一次。 - 数字 
1-9在每一个以粗实线分隔的3x3宫内只能出现一次。(请参考示例图) 
数独部分空格内已填入了数字,空白格用 '.' 表示。
示例

输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
解释:输入的数独如上图所示,唯一有效的解决方案如下所示:
解题思路
                
            
评论