115. 不同的子序列

题目描述

给你两个字符串 st ,统计并返回在 s子序列t 出现的个数。

测试用例保证结果在 32 位有符号整数范围内。

示例

输入:s = “babgbag”, t = “bag”
输出:5
解释:
如下所示, 有 5 种可以从 s 中得到 “bag” 的方案。
babgbag
babgbag
babgbag
babgbag
babgbag

解题思路

class Solution {
    public int numDistinct(String s, String t) {
        int m = s.length(), n = t.length();
        if (m < n) {
            return 0;
        }
        int[][] dp = new int[m + 1][n + 1];
        for (int i = 0; i <= m; i++) {
            dp[i][n] = 1;
        }
        for (int i = m - 1; i >= 0; i--) {
            char sChar = s.charAt(i);
            for (int j = n - 1; j >= 0; j--) {
                char tChar = t.charAt(j);
                if (sChar == tChar) {
                    dp[i][j] = dp[i + 1][j + 1] + dp[i + 1][j];
                } else {
                    dp[i][j] = dp[i + 1][j];
                }
            }
        }
        return dp[0][0];
    }
}

583. 两个字符串的删除操作

题目描述

给定两个单词 word1word2 ,返回使得 word1word2 相同所需的最小步数

每步 可以删除任意一个字符串中的一个字符。

示例

输入: word1 = “sea”, word2 = “eat”
输出: 2
解释: 第一步将 “sea” 变为 “ea” ,第二步将 "eat "变为 “ea”

解题思路

class Solution {
    public int minDistance(String word1, String word2) {
        int m = word1.length(), n = word2.length();
        int[][] dp = new int[m + 1][n + 1];
        for (int i = 1; i <= m; i++) {
            dp[i][0] = i;
        }
        for (int j = 1; j <= n; j++) {
            dp[0][j] = j;
        }
        for (int i = 1; i <= m; i++) {
            char c1 = word1.charAt(i - 1);
            for (int j = 1; j <= n; j++) {
                char c2 = word2.charAt(j - 1);
                if (c1 == c2) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + 1;
                }
            }
        }
        return dp[m][n];
    }
}

72. 编辑距离

题目描述

给你两个单词 word1word2请返回将 word1 转换成 word2 所使用的最少操作数

你可以对一个单词进行如下三种操作:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符

示例

输入:word1 = “intention”, word2 = “execution”
输出:5
解释:
intention -> inention (删除 ‘t’)
inention -> enention (将 ‘i’ 替换为 ‘e’)
enention -> exention (将 ‘n’ 替换为 ‘x’)
exention -> exection (将 ‘n’ 替换为 ‘c’)
exection -> execution (插入 ‘u’)

解题思路

class Solution {
    public int minDistance(String word1, String word2) {
        int n = word1.length();
        int m = word2.length();

        // 有一个字符串为空串
        if (n * m == 0) {
            return n + m;
        }

        // DP 数组
        int[][] D = new int[n + 1][m + 1];

        // 边界状态初始化
        for (int i = 0; i < n + 1; i++) {
            D[i][0] = i;
        }
        for (int j = 0; j < m + 1; j++) {
            D[0][j] = j;
        }

        // 计算所有 DP 值
        for (int i = 1; i < n + 1; i++) {
            for (int j = 1; j < m + 1; j++) {
                int left = D[i - 1][j] + 1;
                int down = D[i][j - 1] + 1;
                int left_down = D[i - 1][j - 1];
                if (word1.charAt(i - 1) != word2.charAt(j - 1)) {
                    left_down += 1;
                }
                D[i][j] = Math.min(left, Math.min(down, left_down));
            }
        }
        return D[n][m];
    }
}