1143. 最长公共子序列

题目描述

给定两个字符串 text1text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace""abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

示例

输入:text1 = “abc”, text2 = “abc”
输出:3
解释:最长公共子序列是 “abc” ,它的长度为 3 。

解题思路

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int m = text1.length(), n = text2.length();
        // dp[i][j] 表示 text1[0:i] 和 text2[0:j] 的最长公共子序列的长度。
        int[][] dp = new int[m + 1][n + 1];

        for (int i = 1; i <= m; i++) {
            char c1 = text1.charAt(i - 1);
            for (int j = 1; j <= n; j++) {
                char c2 = text2.charAt(j - 1);
                if (c1 == c2) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[m][n];
    }
}

1035. 不相交的线

题目描述

在两条独立的水平线上按给定的顺序写下 nums1nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i]nums2[j] 的直线,这些直线需要同时满足:

  • nums1[i] == nums2[j]
  • 且绘制的直线不与任何其他连线(非水平线)相交。

请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

示例

img

输入:nums1 = [1,4,2], nums2 = [1,2,4]
输出:2
解释:可以画出两条不交叉的线,如上图所示。
但无法画出第三条不相交的直线,因为从 nums1[1]=4 到 nums2[2]=4 的直线将与从 nums1[2]=2 到 nums2[1]=2 的直线相交。

解题思路

class Solution {
    public int maxUncrossedLines(int[] nums1, int[] nums2) {
        int m = nums1.length, n = nums2.length;
        int[][] dp = new int[m + 1][n + 1];
        for (int i = 1; i <= m; i++) {
            int num1 = nums1[i - 1];
            for (int j = 1; j <= n; j++) {
                int num2 = nums2[j - 1];
                if (num1 == num2) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[m][n];
    }
}

53. 最大子数组和

题目描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组是数组中的一个连续部分。

示例

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

解题思路

class Solution {
    public int maxSubArray(int[] nums) {
        int sum = nums[0];
        int ans = sum;
        for (int i = 1; i < nums.length; i++) {
            if (sum < 0) {
                sum = nums[i];
            } else {
                sum += nums[i];
            }
            ans = Math.max(sum, ans);
        }
        return ans;
    }
}

392. 判断子序列

题目描述

给定字符串 st ,判断 s 是否为 t 的子序列。

字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace""abcde"的一个子序列,而"aec"不是)。

进阶:

如果有大量输入的 S,称作 S1, S2, … , Sk 其中 k >= 10亿,你需要依次检查它们是否为 T 的子序列。在这种情况下,你会怎样改变代码?

示例

输入:s = “abc”, t = “ahbgdc”
输出:true

解题思路

双指针法

class Solution {
    public boolean isSubsequence(String s, String t) {
        int n = s.length(), m = t.length();
        int i = 0, j = 0;
        while (i < n && j < m) {
            if (s.charAt(i) == t.charAt(j)) {
                i++;
            }
            j++;
        }
        return i == n;
    }
}

动态规划法

class Solution {
    public boolean isSubsequence(String s, String t) {
        int n = s.length(), m = t.length();

        int[][] f = new int[m + 1][26];
        for (int i = 0; i < 26; i++) {
            f[m][i] = m;
        }

        for (int i = m - 1; i >= 0; i--) {
            for (int j = 0; j < 26; j++) {
                if (t.charAt(i) == j + 'a')
                    f[i][j] = i;
                else
                    f[i][j] = f[i + 1][j];
            }
        }
        int add = 0;
        for (int i = 0; i < n; i++) {
            if (f[add][s.charAt(i) - 'a'] == m) {
                return false;
            }
            add = f[add][s.charAt(i) - 'a'] + 1;
        }
        return true;
    }
}